Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new Medium article from our Department explores how optogenetics has transformed neuroscientific research and opened new possibilities for the treatment of brain disorders, and sheds light on the series of early research work undertaken by Professor Gero Miesenböck and his team to evolve this breakthrough technology.

© Gero Miesenböck - in optogenetics, a light beam is used to write information to nerve cells in the brain
Image: Gero Miesenböck

On the afternoon of 12 June 1999, a Saturday, Gero Miesenböck returned to his apartment in Manhattan from a long walk after lunch, ready to open a book he had been absorbed in, Independence Day by Richard Ford. “As I was reaching for the book, drifting from the real world into Ford’s fictional New Jersey, there was the idea of optogenetic control. I knew instantly that I was on to something. My wife remembers my excitement as I tried to explain the concept to her, and especially the terrible hangover nearly two years later when my postdoc and I celebrated that we had got it to work.”

That Manhattan moment launched a series of now classical studies that made Miesenböck the first scientist to modify nerve cells genetically so that their activity could be controlled by light. This breakthrough technology, called optogenetics, has transformed neuroscientific research and opened new possibilities for the treatment of brain disorders. By providing the means to control neural signals with high precision, optogenetics has raised neurobiology’s standards of proof. It has shed light, literally and figuratively, on virtually every brain function: sensation and movement, motivation and learning, sleep and waking, communication and decision-making.

Read more (Medium website)

Similar stories

Professor Dame Sue Black to deliver 2022 Christmas Lectures

In the 2022 Christmas Lectures from the Royal Institution, DPAG's Visiting Professor of Forensic Anatomy Dame Sue Black will share secrets of forensic science.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Swietach Group scientists have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

Gero Miesenböck awarded Horwitz Prize for foundational work on Optogenetics

Congratulations are in order for Professor Gero Miesenböck, who is to be awarded the 2022 Louisa Gross Horwitz Prize, together with Professors Karl Deisseroth and Peter Hegemann, for research that laid the foundation for the field of optogenetics.

Randy Bruno and Scott Waddell receive Wellcome Discovery Awards

Congratulations are in order for Professors Randy Bruno and Scott Waddell who have each been awarded a prestigious Wellcome Trust Discovery Award to significantly enhance our understanding of higher cognitive functions.

Researchers discover novel form of adaptation in the auditory system

DPAG’s auditory neuroscience researchers have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.