Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new Medium article from our Department explores how optogenetics has transformed neuroscientific research and opened new possibilities for the treatment of brain disorders, and sheds light on the series of early research work undertaken by Professor Gero Miesenböck and his team to evolve this breakthrough technology.

Image: Gero Miesenböck

On the afternoon of 12 June 1999, a Saturday, Gero Miesenböck returned to his apartment in Manhattan from a long walk after lunch, ready to open a book he had been absorbed in, Independence Day by Richard Ford. “As I was reaching for the book, drifting from the real world into Ford’s fictional New Jersey, there was the idea of optogenetic control. I knew instantly that I was on to something. My wife remembers my excitement as I tried to explain the concept to her, and especially the terrible hangover nearly two years later when my postdoc and I celebrated that we had got it to work.”

That Manhattan moment launched a series of now classical studies that made Miesenböck the first scientist to modify nerve cells genetically so that their activity could be controlled by light. This breakthrough technology, called optogenetics, has transformed neuroscientific research and opened new possibilities for the treatment of brain disorders. By providing the means to control neural signals with high precision, optogenetics has raised neurobiology’s standards of proof. It has shed light, literally and figuratively, on virtually every brain function: sensation and movement, motivation and learning, sleep and waking, communication and decision-making.

Read more (Medium website)

Similar stories

Cortex may regulate the need for sleep

Why we sleep, and the processes behind sleep, are amongst the most interesting questions in modern neuroscience. Researchers at the University of Oxford, including DPAG's Molnár and Vyazovskiy group scientists, have now uncovered a new target for sleep investigations within the mammalian brain – the cerebral cortex. The paper, first authored by Dr Lukas Krone, was published today in Nature Neuroscience.

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.