Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new Medium article from our Department explores how optogenetics has transformed neuroscientific research and opened new possibilities for the treatment of brain disorders, and sheds light on the series of early research work undertaken by Professor Gero Miesenböck and his team to evolve this breakthrough technology.

© Gero Miesenböck - in optogenetics, a light beam is used to write information to nerve cells in the brain
Image: Gero Miesenböck

On the afternoon of 12 June 1999, a Saturday, Gero Miesenböck returned to his apartment in Manhattan from a long walk after lunch, ready to open a book he had been absorbed in, Independence Day by Richard Ford. “As I was reaching for the book, drifting from the real world into Ford’s fictional New Jersey, there was the idea of optogenetic control. I knew instantly that I was on to something. My wife remembers my excitement as I tried to explain the concept to her, and especially the terrible hangover nearly two years later when my postdoc and I celebrated that we had got it to work.”

That Manhattan moment launched a series of now classical studies that made Miesenböck the first scientist to modify nerve cells genetically so that their activity could be controlled by light. This breakthrough technology, called optogenetics, has transformed neuroscientific research and opened new possibilities for the treatment of brain disorders. By providing the means to control neural signals with high precision, optogenetics has raised neurobiology’s standards of proof. It has shed light, literally and figuratively, on virtually every brain function: sensation and movement, motivation and learning, sleep and waking, communication and decision-making.

Read more (Medium website)

Similar stories

New blood test from DPAG cardiac researchers could save lives of heart attack victims

Researchers from the Herring group have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

Mootaz Salman set to target new treatments for stroke

The Chief Scientist Office of the Government of Scotland has awarded a collaborative grant of £298,966 to Dr Mootaz Salman to seek new therapeutic avenues to treat stroke.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations are in order for Professor Gero Miesenböck, who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.

New BBSRC grant to further our insights into how the cortex controls sleep

Professor of Sleep Physiology Vladyslav Vyazovskiy and Professor of Developmental Neuroscience Zoltán Molnár have been awarded a Project Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) for “Brain mechanisms of sleep: top-down or bottom-up?”

Raised intracellular chloride levels underlie the effects of tiredness in cortex

A new study, co-authored by Professor Vladyslav Vyazovskiy, published in Nature Neuroscience, has revealed that intracellular chloride levels within cortical pyramidal neurons reflect sleep–wake history.