Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The switch in the brain that sends us off to sleep has been identified by researchers at Oxford University’s Centre for Neural Circuits and Behaviour in a study in fruit flies.

The switch works by regulating the activity of a handful of sleep-promoting nerve cells, or neurons, in the brain. The neurons fire when we’re tired and need sleep, and dampen down when we’re fully rested.

‘When you’re tired, these neurons in the brain shout loud and they send you to sleep,’ says Professor Gero Miesenböck of Oxford University, in whose laboratory the new research was performed.

Although the research was carried out in fruit flies, or Drosophila, the scientists say the sleep mechanism is likely to be relevant to humans.

Dr Jeffrey Donlea, one of the lead authors of the study, explains: ‘There is a similar group of neurons in a region of the human brain. These neurons are also electrically active during sleep and, like the flies’ cells, are the targets of general anaesthetics that put us to sleep. It’s therefore likely that a molecular mechanism similar to the one we have discovered in flies also operates in humans.’

The researchers say that pinpointing the sleep switch might help us identify new targets for novel drugs – potentially to improve treatments for sleep disorders.

But there is much still to find out, and further research could give insight into the big unanswered question of why we need to sleep at all, they say.

‘The big question now is to figure out what internal signal the sleep switch responds to,’ says Dr Diogo Pimentel of Oxford University, the other lead author of the study. ‘What do these sleep-promoting cells monitor while we are awake?

‘If we knew what happens in the brain during waking that requires sleep to reset, we might get closer to solving the mystery of why all animals need to sleep.’

The findings are reported in the journal Neuron. The work of the Centre for Neural Circuits and Behaviour is funded by the Wellcome Trust and the Gatsby Charitable Foundation. This study was also supported by the UK Medical Research Council, the US National Institutes of Health, and the Human Frontier Science Program.

The body uses two mechanisms to regulate sleep. One is the body clock, which attunes humans and animals to the 24 hour cycle of day and night. The other mechanism is the sleep ‘homeostat’: a device in the brain that keeps track of your waking hours and puts you to sleep when you need to reset. This mechanism represents an internal nodding off point that is separate from external factors. When it is turned off or out of use, sleep deficits build up.

What makes us go to sleep at night is probably a combination of the two mechanisms,’ says Professor Miesenböck. ‘The body clock says it’s the right time, and the sleep switch has built up pressure during a long waking day.’

The work in fruit flies allowed the critical part of the sleep switch to be discovered. ‘We discovered mutant flies that couldn’t catch up on their lost sleep after they had been kept awake all night,’ says Dr Jeffrey Donlea.

Flies stop moving when they go to sleep and require more disturbance to get them up. Sleep-deprived flies are prone to nodding off and are cognitively impaired – they have severe learning and memory deficits, much as sleep loss in humans leads to problems.

Professor Miesenböck says: ‘The sleep homeostat is similar to the thermostat in your home. A thermostat measures temperature and switches on the heating if it’s too cold. The sleep homeostat measures how long a fly has been awake and switches on a small group of specialized cells in the brain if necessary. It’s the electrical output of these nerve cells that puts the fly to sleep.’

In the mutant flies, the researchers were able to show a key molecular component of the electrical activity switch is broken and the sleep-inducing neurons are always off, causing insomnia.

Source

Similar stories

Just over half of British Indians would take COVID vaccine

EDI News Outreach Postdoctoral Publication Research Riley Group News

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Thomas Willis (1621 - 1675) 400th Birthday - Alastair Buchan in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Pro-Vice-Chancellor Professor Alastair Buchan to learn more about Thomas Willis's residence and base for scientific discoveries, Beam Hall.

Thomas Willis (1621 - 1675) 400th Birthday - Erica Charters in conversation with Zoltán Molnár

General Research

Professor Zoltán Molnár talks to Dr Erica Charters for a History of Medicine perspective on Oxford physician and Father of Neurology Thomas Willis.

Thomas Willis 400th anniversary trailer

General Research

On 27 January 2021 we celebrate the 400th anniversary of the birth of the greatest neuroanatomist of all time, Thomas Willis. DPAG's Professor Zoltán Molnár has interviewed 8 experts - watch a video preview of what's to come from Monday onwards! With thanks to St John's College.

Earliest origins of the forming heart identified

Cardiac Theme Postdoctoral Publication Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Covid-19 lung damage identified in study

Postdoctoral Research

In a new study into the longer-term damage amongst patients recovering from COVID-19, DPAG Research Fellow Dr James Grist of the Tyler Lab has been running a novel scanning technique that shows a dramatic decrease in the ability of the lungs to diffuse gas in to the blood stream after COVID infection. This work may shed light on the problem of breathlessness after COVID infection and help guide us in understanding therapeutic selection and efficacy.