Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Preparing media for tissue culture, but not sure how to get it to the right pH? Worried about pH changes during your incubations? DPAG Group publishes recommendations for best practice in controlling and managing pH under culture conditions.

Cell culture media containing the pH-indicator Phenol Red at different pHs, from acidic (left, yellow) to alkaline (right, pink). Work by Stefania Cannone. Photo credit: KC Park (Swietach Group)

Postdoctoral Research Scientist Johanna Michl and her team in the Swietach Group have used real-time pH measurements of cell culture media and intracellular pH data from live-cell culture conditions to explore the effects of commonly-used buffers. Based on their data, they have proposed guidelines for controlling pH in cell culture systems and improving reproducibility.

Due to its powerful effects on biology, pH is the most fundamental chemical variable that researchers consider when preparing culture media, and one that could, and should, be managed to the highest level of rigour.  However, in the absence of consensus guidelines, various laboratories have adopted strikingly different approaches to controlling pH.

Some methods inadvertently produce pH artefacts that increase noise, compromise reproducibility or even give erroneous inferences.  

As an example, many commonly used media formulations contain 44 mM bicarbonate, which at 5% CO2, equilibrates to the non-physiological pH of 7.7. Media containing non-bicarbonate buffers (e.g. HEPES) may show pH-drift, if prepared incorrectly. Furthermore, medium pH will become disturbed when cells are transferred in and out of CO2 incubators. - Associate Professor Pawel Swietach

In a recent article lead by first author Johanna Michl and published in Communications Biology, the team describe a method for real-time monitoring of extracellular pH and a high-throughput pipeline for measuring intracellular pH under live-cell culture conditions.  The team uses these to show how certain buffering regimes produce pH artefacts, and explain how such errors could be avoided. The paper concludes with guidelines for improving pH control in culture systems.

The full publication Evidence-based guidelines for controlling pH in mammalian live-cell culture systems is available to read here.

Similar stories

Inaugural winners of the DPAG Prize for Public Engagement with Research announced

Congratulations are in order for the winners Katherine Brimblecombe and Anna Kordala, and also to Jéssica Luiz and Andia Redpath who were highly commended for their outreach and public engagement work.

Raised intracellular chloride levels underlie the effects of tiredness in cortex

A new study, co-authored by Professor Vladyslav Vyazovskiy, published in Nature Neuroscience, has revealed that intracellular chloride levels within cortical pyramidal neurons reflect sleep–wake history.

Strong performance for DPAG cardiac research at the Oxford BHF CRE Annual Symposium

Congratulations are in order for Kaitlyn Dennis, Dr Ni Li and Dr KC Park on their awards at this year's major showcase for Oxford's British Heart Foundation funded researchers.

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.