Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Stimulating the heart to repair itself is within scientific touching distance, thanks in large part to the work of Professor Paul Riley and his team in the Department of Physiology, Anatomy and Genetics

Article published on the Raconteur website.

 

Almost 500 people suffer a heart attack every day in the UK and seven out of ten survive. But the uplifting statistic masks a deeper problem in that most will join the 550,000-strong ranks of people living with debilitating heart failure.

Heart transplants are rare – only 181 were performed in 2014 – so the Holy Grail in cardiology is the ability to stimulate the heart to repair itself and regrow naturally.

It seems that nature has been kind by ensuring some of the cells that cause the heart to form in the embryo persist in adulthood, although they stay dormant during the ageing process when the heart deteriorates.

But scientists have discovered a method of re-activating some of the cells to create new heart tissue that could have a curative impact on diseased hearts and generate an improved quality of life to those who normally would have been consigned to a slow-paced decline.

 

For the rest of the article, please visit the Raconteur website.

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.

Collaborative MRC grant paves the way to new therapeutic targets for stress and anxiety disorders

Dr Armin Lak, Associate Professor Ed Mann and Professor Zoltán Molnár have been awarded a £733K Project Grant from the Medical Research Council on “Orexinergic projections to neocortex: potential role in arousal, stress and anxiety-related disorders”.