Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Stimulating the heart to repair itself is within scientific touching distance, thanks in large part to the work of Professor Paul Riley and his team in the Department of Physiology, Anatomy and Genetics

Article published on the Raconteur website.

 

Almost 500 people suffer a heart attack every day in the UK and seven out of ten survive. But the uplifting statistic masks a deeper problem in that most will join the 550,000-strong ranks of people living with debilitating heart failure.

Heart transplants are rare – only 181 were performed in 2014 – so the Holy Grail in cardiology is the ability to stimulate the heart to repair itself and regrow naturally.

It seems that nature has been kind by ensuring some of the cells that cause the heart to form in the embryo persist in adulthood, although they stay dormant during the ageing process when the heart deteriorates.

But scientists have discovered a method of re-activating some of the cells to create new heart tissue that could have a curative impact on diseased hearts and generate an improved quality of life to those who normally would have been consigned to a slow-paced decline.

 

For the rest of the article, please visit the Raconteur website.

Similar stories

Iron deficiency anaemia in early pregnancy increases risk of heart defects, suggests new research

In animal models, iron deficient mothers have a greatly increased risk of having offspring with congenital heart disease (CHD). The risk of CHD can be greatly reduced if the mother is given iron supplements very early in pregnancy. Additionally, embryos from a mouse model of Down Syndrome were particularly vulnerable to the effects of maternal iron deficiency, leading to a higher risk of developing severe heart defects.

New target to develop immunosuppressants

A new study from the Parekh Group has resolved a long-standing question in our understanding of intracellular Ca2+ signalling, namely how a specific type of Ca2+ channel is uniquely able to signal to the nucleus to regulate gene expression. By unravelling this mechanism, researchers have identified a new approach for developing immunosuppressant drugs.

How the kidney contributes to healthy iron levels and disease

A new study from the Lakhal-Littleton Group has addressed a long-standing gap in our understanding of systemic iron homeostasis. It provides the first formal demonstration that the hormone hepcidin controls iron reabsorption in the kidney, in a manner that impacts the body’s iron levels, under normal physiological conditions. It also demonstrates for the first time how this mechanism becomes critically important in the development of iron disorders.

New research to radically alter our understanding of synaptic development

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Being "in the zone": how waking activity controls sleep need

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.