Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new collaborative drug discovery project in Friedreich’s Ataxia (FA) between the University of Oxford, Ataxia UK, Pfizer Inc, UCL and Imperial College London was recently announced.

The collaboration was initiated by Ataxia UK, the national charity for people living with ataxia. It brings together academic researchers who will work together with Pfizer scientists based both in the US (Cambridge MA) and at Pfizer’s new Genetic Medicine Institute in London.

Friedreich's ataxia is an inherited, progressive disorder that affects co-ordination, balance and speech [1] with patients typically left unable to walk around 15 years after diagnosis.[2]

Dr Michele Lufino, the University of Oxford researcher leading the collaboration commented: “Finding therapies for Friedreich’s Ataxia is a challenging undertaking which requires a radically novel research approach. At Oxford we believe that collaboration is key to succeed in this complex task and for this reason we are particularly proud of the collaboration that Ataxia UK has helped establish by bringing together leading researchers from industry and academia.”

The programme will initially run for three years and aims to develop a potential new medicine or therapy for Friedreich’s ataxia that, if successful, may be tested in clinical trials. The following academic researchers will conduct the investigations:

  • Dr Michele Lufino, from the Department of Physiology, Anatomy and Genetics at the University of Oxford, who has developed methods to study the effect of drugs in cell and animal models of FA and to better understand the FA mechanism of disease.
  • Dr Paola Giunti from University College London, who brings her basic research studies on the functionality of the frataxin protein in cell and animal models and clinical expertise from running the London Ataxia Centre.
  • Professor Richard Festenstein from Imperial College, London, who has expertise on the frataxin gene regulation and has recently completed a clinical trial of nicotinamide in FA patients with Dr Giunti.

“The research model created with the help of Ataxia UK brings an increased patient focus to our efforts. I’m excited by the potential of bringing together the collective wisdom of three of the UK’s top ataxia researchers from three of the world’s finest universities. Collaborative models like this represent the future for rare diseases research, where everyone pools resources with a common purpose of trying to accelerate medicine discovery in an area of significant unmet need,” says Michael Skynner, Head of the Pfizer Rare Disease Consortium.

This collaboration signifies another positive step forward towards strengthening research partnerships for the purpose of accelerating drug discovery within the rare disease community

Note:

More information on rare disease research in Oxford and how to work with us can be found at www.rarediseases.ox.ac.uk.

This programme adds to a portfolio of collaborative research projects previously announced between Oxford and the Pfizer Rare Disease Consortium; an initiative initially signed between Pfizer and the six UK universities which form GMEC (University of Oxford, University College London, King’s College London, University of Cambridge, Imperial College London and Queen Mary’s College London).



[1] NHS Choices. Accessed at http://www.nhs.uk/conditions/Ataxia/Pages/Introduction.aspx. Last accessed July 2015

[2] Patient info: Friedreich’s ataxia. Accessed at  http://patient.info/doctor/friedreichs-ataxia. Last accessed July 2015

Similar stories

Key cause of type 2 diabetes uncovered

Research led by Dr Elizabeth Haythorne and Professor Frances Ashcroft reveals high blood glucose reprograms the metabolism of pancreatic beta-cells in diabetes. They have discovered that glucose metabolites, rather than glucose itself, are key to the progression of type 2 diabetes. Glucose metabolites damage pancreatic beta-cell function, so they are unable to release enough of the hormone insulin. Reducing the rate at which glucose is metabolised, and these glucose metabolites build up, can prevent the effects of hyperglycaemia.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.

Updating the circuit maps of the sympathetic neural network

A new review from Professor Ana Domingos’ lab and colleagues offers a fresh modern viewpoint on sympathetic neurons and their relation to immune cells and obesity.

New Pfizer grant paves the way to a better understanding of how body fat is controlled

Professor Ana Domingos has been awarded a highly competitive independent research grant from Pfizer to discover ‘the role of Sympathetic-associated Perineurial barrier Cells in obesity’.

Collaborative MRC grant paves the way to new therapeutic targets for stress and anxiety disorders

Dr Armin Lak, Associate Professor Ed Mann and Professor Zoltán Molnár have been awarded a £733K Project Grant from the Medical Research Council on “Orexinergic projections to neocortex: potential role in arousal, stress and anxiety-related disorders”.