Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.
Pemberton J. et al, (2024), Nat Commun, 15
A Cortical Microcircuit for Region-Specific Credit Assignment in Reinforcement Learning
Chevy Q. et al, (2024)
Self-supervised predictive learning accounts for cortical layer-specificity
Kermani Nejad K. et al, (2024)
Distributional coding of associative learning in discrete populations of midbrain dopamine neurons.
Avvisati R. et al, (2024), Cell Rep, 43
The short-term plasticity of VIP interneurons in motor cortex.
McFarlan AR. et al, (2024), Front Synaptic Neurosci, 16
Hippocampal networks support reinforcement learning in partially observable environments
Pedamonti D. et al, (2023)
Cerebro-cerebellar networks facilitate learning through feedback decoupling.
Boven E. et al, (2023), Nat Commun, 14
Single-phase deep learning in cortico-cortical networks
Greedy W. et al, (2022), Advances in Neural Information Processing Systems 35
Cerebellar-driven cortical dynamics enable task acquisition, switching and consolidation
Pemberton J. et al, (2022)
Developmental depression-to-facilitation shift controls excitation-inhibition balance.
Jia DW. et al, (2022), Commun Biol, 5
Pre- and postsynaptically expressed spike-timing-dependent plasticity contribute differentially to neuronal learning.
Mizusaki BEP. et al, (2022), PLoS Comput Biol, 18
Lost in Latent Space: Examining failures of disentangled models at combinatorial generalisation
Montero ML. et al, (2022), Advances in Neural Information Processing Systems, 35
Developmental depression-facilitation shift controls excitation-inhibition balance
Jia DW. et al, (2021)
A deep learning framework for neuroscience.
Richards BA. et al, (2019), Nat Neurosci, 22, 1761 - 1770
Computational roles of plastic probabilistic synapses.
Llera-Montero M. et al, (2019), Curr Opin Neurobiol, 54, 90 - 97
Model-Based Inference of Synaptic Transmission.
Bykowska O. et al, (2019), Front Synaptic Neurosci, 11