Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Our previous study identified osteonectin (ON) in a screen of factors made by Schwann cells (SCs) which promoted peripheral and central neurons survival and neuritogenesis, however, the mechanisms of ON promoting effects are largely unknown. In the present study, we investigated the effects of ON-deficient SC-conditioned medium (SCCM) and molecular mechanisms of ON, in regulating retinal ganglion cells (RGCs) survival and neurite outgrowth. Neonatal rat RGCs and SCs were purified by immunopanning technique. RGC survival and neuritogenesis reduced significantly when treated with either ON-null mice SCCM or ON-immunodepleted (IP) SCCM (P<0.05). In contrast to wild type SCCM, in the presence of a tyrosine kinase receptor (Trk) inhibitor (K252a), ON-null mice SCCM-induced neuritogenesis were further reduced by 24%. The Trk-mediated signaling pathways became more sensitive to K252a inhibition in the absence of ON. We also showed the synergistic effects of ON and brain-derived neurotrophic factor (BDNF) in promoting RGCs growth and the involvement of ON in two major neurotrophin-mediated signaling pathways, PI-3K-Akt and MAPK-Erk1/2. ON alone activated Akt phosphorylation and increased survival. Blockage of TrkB signalling pathway by TrkB-Fc chimera (BDNF scavenger) or K252a in ON-treated cultures reduced Akt-P level significantly. This suggests that ON induces BDNF synthesis and secretion from RGCs. The enhancement of neuritogenesis and Erk1/2 phosphorylation by ON in BDNF-treated cultures further demonstrate the signaling pathways responsible for the synergistic effect of ON on BDNF-induced neurite outgrowth. To the best of our knowledge, this is the first report showing the synergistic effects of ON on classical neurotrophins which participate in the same signalling pathways in regulating RGC neurite outgrowth.

Original publication

DOI

10.1016/j.neuroscience.2009.10.026

Type

Journal article

Journal

Neuroscience

Publication Date

20/01/2010

Volume

165

Pages

463 - 474

Keywords

Animals, Animals, Newborn, Axotomy, Brain-Derived Neurotrophic Factor, Cell Enlargement, Cell Survival, Cells, Cultured, Culture Media, Conditioned, MAP Kinase Signaling System, Mice, Mice, Knockout, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Neurites, Osteonectin, Proto-Oncogene Proteins c-akt, Rats, Receptor Protein-Tyrosine Kinases, Retinal Ganglion Cells, Schwann Cells