Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Retinal axons undergo several changes in organization as they pass through the region of the optic chiasm and optic tract. We used immunocytochemistry to examine the possible involvement of fibroblast growth factor receptors (FGFR) in these changes in retinal axon growth. In the retina, at all ages examined, prominent staining for FGFR was seen in the optic fiber layer and at the optic disk. At embryonic day 15 (E15), FGFR immunoreactivity was also detected in the ganglion cell layer, as defined by immunoreactivity for islet-1. At later developmental stages (E16 to postnatal day 0), FGFR were found in the optic fiber layer and the inner plexiform layer. In the ventral diencephalon, immunostaining for FGFR was first detected at E13 in a group of cells posterior to the chiasm. These cells appeared to match the neurons that are immunopositive for the stage-specific embryonic antigen-1 (SSEA-1). FGFR staining was also found on the retinal axons at E13. At E14-E16, when most axons are growing across the chiasm and the tract, a dynamic pattern of FGFR immunoreactivity was observed on the retinal axons. The staining was reduced when axons reached the midline but was increased when axons reached the threshold of the optic tract. These results suggest that axon growth and fiber patterning in distinct regions of the retinofugal pathway are in part controlled by a regulated expression of FGFR. Furthermore, the axons with elevated FGFR expression in the optic tract have a posterior border of rich FGFR expression in the lateral part of the diencephalon. This region overlaps with a lateral extension of the SSEA-1-positive cells, suggesting a possible relation of these cells to the elevated expression of FGFR.

Original publication




Journal article


J Comp Neurol

Publication Date





22 - 32


Animals, Axons, Female, Immunohistochemistry, Mice, Mice, Inbred C57BL, Optic Chiasm, Pregnancy, Receptors, Fibroblast Growth Factor, Retina, Visual Pathways