Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Computational modelling of biological processes and systems has witnessed a remarkable development in recent years. The search-term (modelling OR modeling) yields over 58000 entries in PubMed, with more than 34000 since the year 2000: thus, almost two-thirds of papers appeared in the last 5-6 years, compared to only about one-third in the preceding 5-6 decades. The development is fuelled both by the continuously improving tools and techniques available for bio-mathematical modelling and by the increasing demand in quantitative assessment of element inter-relations in complex biological systems. This has given rise to a worldwide public domain effort to build a computational framework that provides a comprehensive theoretical representation of integrated biological function-the Physiome. The current and next issues of this journal are devoted to a small sub-set of this initiative and address biocomputation and modelling in physiology, illustrating the breadth and depth of experimental data-based model development in biological research from sub-cellular events to whole organ simulations.

Original publication




Journal article


Philos Trans A Math Phys Eng Sci

Publication Date





1099 - 1106


Computer Simulation, Mathematics, Models, Biological, Physiology, Systems Biology