Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Twenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. Although the amount of wake increased during FAA and subsequent feeding, total wake time over 24 hours remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep that followed spontaneous wake episodes during the dark period and the extended period of wake associated with FAA, exhibited lower levels of slow-wave activity (SWA) when compared to baseline or after sleep deprivation, despite a similar duration of waking. This suggests an evolutionary mechanism of reducing sleep drive during negative energy balance to enable greater arousal for food-seeking behaviors. However, the total amount of sleep and SWA accumulated during the 24 hours was similar between baseline and RF. In summary, our study suggests that despite substantial changes in the daily distribution and quality of wake induced by RF, sleep homeostasis is maintained.

Original publication

DOI

10.1093/sleep/zsz157

Type

Conference paper

Publication Date

21/10/2019

Volume

42

Keywords

sleep homeostasis, behavior, circadian rhythms, electroencephalography, food anticipatory activity, food entrainment, sleep deprivation, slow-wave energy, Animals, Arousal, Circadian Rhythm, Electroencephalography, Food, Homeostasis, Male, Mice, Sleep, Wakefulness