Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The effects of 2 mM cesium (Cs+) and a novel selective bradycardic agent ZD7288 (0.64 microM) on sinoatrial Node (SAN) pacing rate were investigated in an isolated guinea pig SAN/atrial preparation, rabbit SAN preparation, and isolated working rabbit heart preparation. The effect of Cs+ and ZD7288 on the response of the preparations to increased extracellular potassium concentration ([K+]o) was also studied. Cs+ reduced beating frequency by 24% in isolated rabbit SAN (n = 16, p < 0.01) and by 21% in isolated working rabbit heart (n = 9, p < 0.01). ZD7288 decreased beating rate by 53% in guinea pig SAN (n = 7, p < 0.01) and by 38% in isolated working rabbit heart (n = 6, p < 0.01). In all three preparations, increased [K+]o significantly decreased the rate (p < 0.01) in normal Tyrode's solution but had no effect in the presence of Cs+ and caused tachycardia (p < 0.01) in the presence of ZD7288. We conclude that Cs+ and ZD7288 decrease pacing rate in rabbits and guinea pigs, possibly through modulation of the hyperpolarization-activated current (I(f)). ZD7288 is a more effective bradycardic agent than Cs+.

Original publication




Journal article


J Cardiovasc Pharmacol

Publication Date





300 - 306


Animals, Atrioventricular Node, Bradycardia, Cardiotonic Agents, Cesium, Female, Guinea Pigs, Heart, Heart Rate, In Vitro Techniques, Male, Potassium, Pyrimidines, Rabbits, Species Specificity