Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Epilepsy is one of the most frequent neurological disorders. The main method used in epilepsy diagnosis is electroencephalogram (EEG) signal analysis. However this method requires a time-consuming analysis when made manually by an expert due to the length of EEG recordings. This paper proposes an automatic classification system for epilepsy based on neural networks and EEG signals. The neural networks use 14 features (extracted from EEG) in order to classify the brain state into one of four possible epileptic behaviors: inter-ictal, pre-ictal, ictal and pos-ictal. Experiments were made in a (i) single patient (ii) different patients and (ii) multiple patients, using two datasets. The classification accuracies of 6 types of neural networks architectures are compared. We concluded that with the 14 features and using the data of a single patient results in a classification accuracy of 99%, while using a network trained for multiple patients an accuracy of 98% is achieved. © 2008 Springer-Verlag Berlin Heidelberg.

Original publication




Conference paper

Publication Date



5178 LNAI


281 - 288