Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The metabolic enzyme cytidine triphosphate synthase has recently been found to form micrometer-sized filamentous structures termed cytoophidia, which are evolutionarily conserved across prokaryotes and eukaryotes. The cytoophidium represents a novel type of membraneless organelle and behaves dynamically inside the cell. The question of how cytoophidia transport is mediated, however, remains unanswered. For the first time, we detected in this study the active transport of cytoophidia, taking advantage of the fission yeast Schizosaccharomyces pombe as an excellent model for studying membraneless organelles. We demonstrated that actin filaments, not microtubules, are responsible for this transport. Furthermore, we determined that Myo52, a type of myosin V, is required for the active transport of cytoophidia. These results reveal the major players critical to the dynamics of cytoophidia and extend our understanding of intracellular transport of membraneless organelles.-Li, H., Ye, F., Ren, J.-Y., Wang, P.-Y., Du, L.-L., Liu, J.-L. Active transport of cytoophidia in Schizosaccharomyces pombe.

Original publication




Journal article



Publication Date





5891 - 5898


actin filaments, cytoophidium, microtubules, motor proteins, Actins, Biological Transport, Active, Carbon-Nitrogen Ligases, Cytoplasm, Optical Imaging, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Single-Cell Analysis