Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.

Original publication

DOI

10.1016/bs.ctdb.2017.11.003

Type

Journal article

Journal

Curr Top Dev Biol

Publication Date

2018

Volume

128

Pages

365 - 390

Keywords

Anterior visceral endoderm, Anterior–posterior axis patterning, Cell migration, Epithelial cell movement, Gastrulation, Morphogenesis, Animals, Body Patterning, Cell Movement, Embryo, Mammalian, Endoderm, Germ Layers, Mice