Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new polarimeter is presented which gives time-resolved measurements of both the optic-axis angle and the linear phase retardation for modulated birefringent optical devices. It is suitable for characterizing dynamic waveplate devices based on liquid crystal and other materials. It is fully automated and requires no angular alignment of the device under test. The system has an absolute angle error of < ± 0.3° and a retardance error of < ± 0.44°, with considerably better relative accuracy. The method has been tested with a chiral nematic liquid crystal device exhibiting flexoelectro-optic switching at 3 kHz in the uniform lying helix mode. These results represent the first time-resolved tilt-angle and phase retardation measurements for a liquid crystal device operating at fast switching frequencies.

Original publication




Journal article


Opt Express

Publication Date





6126 - 6142