Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Ca2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca2+ currents and proliferation in pituitary tumor GH3 cells. MAIN METHODS: Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. KEY FINDINGS: Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. SIGNIFICANCE: We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca2+ current density and this phenomenon impacts proliferation rate in GH3 cells.

Original publication

DOI

10.1016/j.lfs.2017.11.040

Type

Journal article

Journal

Life Sci

Publication Date

01/01/2018

Volume

192

Pages

144 - 150

Keywords

Ca(2+) channels, Cell proliferation, FRET-imaging, Forskolin, Patch-clamp, cAMP, Animals, Bucladesine, Calcium Channel Blockers, Calcium Channels, Calcium Channels, L-Type, Calcium Channels, T-Type, Cell Line, Tumor, Cell Proliferation, Colforsin, Cyclic AMP, Mibefradil, Patch-Clamp Techniques, Pituitary Neoplasms, Rats, Vasodilator Agents