Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 SPIE. Networks of neurons are inherently three-dimensional in nature, whereas conventional imaging methods, such as laser scanning two-photon microscopy, usually provide only fast two-dimensional imaging. Rapid volumetric imaging would however be preferable for imaging neurons. To get a more complete picture of the dynamics of the neuron-to-neuron interactions, we have developed a pseudo-parallelised multi-plane two-photon excitation imaging system through the incorporation of an acousto-optic switching and a remote focusing technique into a resonant scanning microscope. This permits the recording of millisecond scale fluorescence transients of calcium indicators from large populations of neurons upon neural firing events at multiple chosen axial planes in very short time frame. While the remote focusing system offers aberration-free axial scanning over a few hundreds of micrometres of depth, the acousto-optic deflector provides high speed optical switching between different laser beam paths in sub-microsecond timescale which in turn, controls the axial focal plane to be targeted. Here, we report on the development of the high temporal resolution multi-plane targeted microscope and its potential application.

Original publication

DOI

10.1117/12.2251476

Type

Conference paper

Publication Date

01/01/2017

Volume

10070