Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Animals constantly assess the reliability of learned information to optimize their behaviour. On retrieval, consolidated long-term memory can be neutralized by extinction if the learned prediction was inaccurate. Alternatively, retrieved memory can be maintained, following a period of reconsolidation during which it is labile. Although extinction and reconsolidation provide opportunities to alleviate problematic human memories, we lack a detailed mechanistic understanding of memory updating. Here we identify neural operations underpinning the re-evaluation of memory in Drosophila. Reactivation of reward-reinforced olfactory memory can lead to either extinction or reconsolidation, depending on prediction accuracy. Each process recruits activity in specific parts of the mushroom body output network and distinct subsets of reinforcing dopaminergic neurons. Memory extinction requires output neurons with dendrites in the α and α' lobes of the mushroom body, which drive negatively reinforcing dopaminergic neurons that innervate neighbouring zones. The aversive valence of these new extinction memories neutralizes previously learned odour preference. Memory reconsolidation requires the γ2α'1 mushroom body output neurons. This pathway recruits negatively reinforcing dopaminergic neurons innervating the same compartment and re-engages positively reinforcing dopaminergic neurons to reconsolidate the original reward memory. These data establish that recurrent and hierarchical connectivity between mushroom body output neurons and dopaminergic neurons enables memory re-evaluation driven by reward-prediction error.

Original publication

DOI

10.1038/nature21716

Type

Journal article

Journal

Nature

Publication Date

13/04/2017

Volume

544

Pages

240 - 244

Keywords

Animals, Dendrites, Dietary Carbohydrates, Dopaminergic Neurons, Drosophila melanogaster, Extinction, Psychological, Female, Learning, Male, Memory Consolidation, Memory, Long-Term, Models, Animal, Mushroom Bodies, Odorants, Reinforcement, Psychology, Reward, Smell