Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Stimulation of cell-surface receptors that couple to phospholipase C to generate the second messenger inositol trisphosphate often evokes repetitive oscillations in cytosolic Ca2+ . Signalling information is encoded in both the amplitude and frequency of the Ca2+ spikes. Recent studies have revealed that the spatial profile of the oscillation also imparts signalling power; Ca2+ microdomains near store-operated CRAC channels in the plasma membrane and inositol trisphosphate-gated channels in the endoplasmic reticulum both signal to distinct downstream targets. Spatial profiling therefore increases the transduction power of the universal oscillatory cytosolic Ca2+ signal.

Original publication




Journal article


J Physiol

Publication Date





3053 - 3062


calcium channel, cytosolic calcium, mitochondria, Animals, Calcium, Calcium Release Activated Calcium Channels, Calcium Signaling, Cytosol, Endoplasmic Reticulum, Humans, Mitochondria