Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes - motor neurons, interneurons and mechanosensory neurons - controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.

Original publication

DOI

10.7554/eLife.20713

Type

Journal article

Journal

Elife

Publication Date

15/11/2016

Volume

5

Keywords

D. melanogaster, copulation, doublesex, neuroscience, sexual behavior, sexual-dimorphism, Animals, Copulation, Drosophila, Interneurons, Male, Motor Neurons, Neural Networks, Computer, Neural Pathways, Sensory Receptor Cells