Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In some adaptive optics systems the aberration is determined not by using a wavefront sensor but by sequential optimization of the adaptive correction element. Efficient schemes for the control of such systems are essential if they are to be effective. A scheme is introduced that permits the efficient measurement of large amplitude wavefront aberrations that are represented by an appropriate series of modes. This scheme uses an optimization metric based on the root-mean-square spot radius (or focal spot second moment) and an aberration expansion using polynomials suited to the representation of lateral aberrations. Experimental correction of N aberration modes is demonstrated with a minimum of N+1 photodetector measurements. The geometrical optics basis means that the scheme can be extended to arbitrarily large aberrations.


Journal article


Opt Lett

Publication Date





5 - 7