Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats.
Pijacka W., McBryde FD., Marvar PJ., Lincevicius GS., Abdala APL., Woodward L., Li D., Paterson DJ., Paton JFR.
KEY POINTS: Peripheral chemoreflex sensitization is a feature of renovascular hypertension. Carotid sinus nerve denervation (CSD) has recently been shown to relieve hypertension and reduce sympathetic activity in other rat models of hypertension. We show that CSD in renovascular hypertension halts further increases in blood pressure. Possible mechanisms include improvements in baroreceptor reflex sensitivity and renal function, restoration of cardiac calcium signalling towards control levels, and reduced neural inflammation. Our data suggest that the peripheral chemoreflex may be a viable therapeutic target for renovascular hypertension. ABSTRACT: The peripheral chemoreflex is known to be hyper-responsive in both spontaneously hypertensive (SHR) and Goldblatt hypertensive (two kidney one clip; 2K1C) rats. We have previously shown that carotid sinus nerve denervation (CSD) reduces arterial blood pressure (ABP) in SHR. In the present study, we show that CSD ameliorates 2K1C hypertension and reveal the potential underlying mechanisms. Adult Wistar rats were instrumented to record ABP via telemetry, and then underwent CSD (n = 9) or sham CSD (n = 9) 5 weeks after renal artery clipping, in comparison with normal Wistar rats (n = 5). After 21 days, renal function was assessed, and tissue was collected to assess sympathetic postganglionic intracellular calcium transients ([Ca2+ ]i ) and immune cell infiltrates. Hypertensive 2K1C rats showed a profound elevation in ABP (Wistar: 98 ± 4 mmHg vs. 2K1C: 147 ± 8 mmHg; P