Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Compartmentation is essential for the localization of biological processes within a cell. In 2010, three groups independently reported that cytidine triphosphate synthase (CTPS), a metabolic enzyme for de novo synthesis of the nucleotide CTP, is compartmentalized in cytoophidia (Greek for "cellular snakes") in bacteria, yeast, and fruit flies. Subsequent studies demonstrate that CTPS can also form filaments in human cells. Thus, the cytoophidium represents a new type of intracellular compartment that is strikingly conserved across prokaryotes and eukaryotes. Multiple lines of evidence have recently suggested that polymerization of metabolic enzymes such as CTPS and inosine monophosphate dehydrogenase into filamentous cytoophidia modulates enzymatic activity. With many more metabolic enzymes found to form the cytoophidium and its kind, compartmentation via filamentation may serve as a general mechanism for the regulation of metabolism.

Original publication




Journal article


Annu Rev Cell Dev Biol

Publication Date





349 - 372


CTP synthase, CTPS, IMPDH, cytoplasm, metabolism, nucleus, organelle, Animals, Cell Compartmentation, Enzymes, Humans, Models, Biological