Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present a new design of a modal wave-front sensor capable of measuring directly the Zernike components of an aberrated wave front. The sensor shows good linearity for small aberration amplitudes and is particularly suitable for integration in a closed-loop adaptive system. We introduce a sensitivity matrix and show that it is sparse, and we derive conditions specifying which elements are necessarily zero. The sensor may be temporally or spatially multiplexed, the former using a reconfigurable optical element, the latter using a numerically optimized binary optical element. Different optimization schemes are discussed, and their performance is compared.


Journal article


J Opt Soc Am A Opt Image Sci Vis

Publication Date





1098 - 1107