Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Triacylglycerols (TAGs) constitute the main energy storage resource in mammals, by virtue of their high energy density. This in turn is a function of their highly reduced state and hydrophobicity. Limited water solubility, however, imposes specific requirements for delivery and uptake mechanisms on TAG-utilising tissues, including the heart, as well as intracellular disposition. TAGs constitute potentially the major energy supply for working myocardium, both through blood-borne provision and as intracellular TAG within lipid droplets, but also provide the heart with fatty acids (FAs) which the myocardium cannot itself synthesise but are required for glycerolipid derivatives with (non-energetic) functions, including membrane phospholipids and lipid signalling molecules. Furthermore they serve to buffer potentially toxic amphipathic fatty acid derivatives. Intracellular handling and disposition of TAGs and their FA and glycerolipid derivatives similarly requires dedicated mechanisms in view of their hydrophobic character. Dysregulation of utilisation can result in inadequate energy provision, accumulation of TAG and/or esterified species, and these may be responsible for significant cardiac dysfunction in a variety of disease states. This review will focus on the role of TAG in myocardial energy provision, by providing FAs from exogenous and endogenous TAG sources for mitochondrial oxidation and ATP production, and how this can change in disease and impact on cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.

Original publication

DOI

10.1016/j.bbalip.2016.03.010

Type

Journal article

Journal

Biochim Biophys Acta

Volume

1861

Pages

1481 - 1491

Keywords

Chylomicron, Heart, Lipid droplet, Triacylglycerol, VLDL, Very-low-density lipoprotein, Animals, Energy Metabolism, Humans, Intracellular Space, Models, Biological, Myocardium, Triglycerides