Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Good metrics of the performance of a statistical or computational model are essential for model comparison and selection. Here, we address the design of performance metrics for models that aim to predict neural responses to sensory inputs. This is particularly difficult because the responses of sensory neurons are inherently variable, even in response to repeated presentations of identical stimuli. In this situation, standard metrics (such as the correlation coefficient) fail because they do not distinguish between explainable variance (the part of the neural response that is systematically dependent on the stimulus) and response variability (the part of the neural response that is not systematically dependent on the stimulus, and cannot be explained by modeling the stimulus-response relationship). As a result, models which perfectly describe the systematic stimulus-response relationship may appear to perform poorly. Two metrics have previously been proposed which account for this inherent variability: Signal Power Explained (SPE, Sahani and Linden, 2003), and the normalized correlation coefficient (CC norm , Hsu et al., 2004). Here, we analyze these metrics, and show that they are intimately related. However, SPE has no lower bound, and we show that, even for good models, SPE can yield negative values that are difficult to interpret. CC norm is better behaved in that it is effectively bounded between -1 and 1, and values below zero are very rare in practice and easy to interpret. However, it was hitherto not possible to calculate CC norm directly; instead, it was estimated using imprecise and laborious resampling techniques. Here, we identify a new approach that can calculate CC norm quickly and accurately. As a result, we argue that it is now a better choice of metric than SPE to accurately evaluate the performance of neural models.

Original publication

DOI

10.3389/fncom.2016.00010

Type

Journal article

Journal

Front Comput Neurosci

Publication Date

2016

Volume

10

Keywords

model selection, neural coding, receptive field, sensory neuron, signal power, statistical modeling