Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Long non-coding RNAs (lncRNAs) have emerged as regulators of gene expression across metazoa. Interestingly, some lncRNAs function independently of their transcripts - the transcription of the lncRNA locus itself affects target genes. However, current methods of loss-of-function analysis are insufficient to address the role of lncRNA transcription from the transcript which has impeded analysis of their function. Using the minimal CRISPR interference (CRISPRi) system, we show that coexpression of the catalytically inactive Cas9 (dCas9) and guide RNAs targeting the endogenous roX locus in the Drosophila cells results in a robust and specific knockdown of roX1 and roX2 RNAs, thus eliminating the need for recruiting chromatin modifying proteins for effective gene silencing. Additionally, we find that the human and Drosophila codon optimized dCas9 genes are functional and show similar transcription repressive activity. Finally, we demonstrate that the minimal CRISPRi system suppresses roX transcription efficiently in vivo resulting in loss-of-function phenotype, thus validating the method for the first time in a multicelluar organism. Our analysis expands the genetic toolkit available for interrogating lncRNA function in situ and is adaptable for targeting multiple genes across model organisms.

Original publication

DOI

10.1093/nar/gkw063

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

19/05/2016

Volume

44

Keywords

Animals, CRISPR-Cas Systems, Clustered Regularly Interspaced Short Palindromic Repeats, Drosophila, Drosophila Proteins, Gene Expression Regulation, Gene Knockdown Techniques, RNA, Guide, RNA, Long Noncoding, RNA-Binding Proteins, Transcription Factors, Transcription, Genetic