Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Pathological modification of α-synuclein is believed to be an important event in pathogenesis of Parkinson's disease and several other neurodegenerative diseases. In normal cells this protein has been linked to many intracellular processes and pathways. However, neither normal function of α-synuclein in neuronal and certain other types of cells nor its exact role in the disease pathogenesis is well understood, which is largely due to limitations of animal models used for studying this protein. We produced and validated several novel mouse lines for manipulating expression of the endogenous Snca gene coding for α-synuclein. These include a line for conditional Cre-recombinase-driven inactivation of the gene; a line for conditional Flp-driven restoration of a neo-cassete-blocked α-synuclein expression; a new line with a "clean" constituent knockout of the gene as well as a line carrying this knockout locus and Rosa26-stop-lacZ reporter locus linked at the same mouse chromosome 6. Altogether these lines represent a set of new useful tools for studies of α-synuclein normal function and the role of this protein in disease pathogenesis.

Original publication




Journal article


Sci Rep

Publication Date





Animals, Base Sequence, Blotting, Southern, Blotting, Western, Cerebral Cortex, Gene Expression, Gene Targeting, Integrases, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Molecular Sequence Data, alpha-Synuclein