Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: It is difficult to design a system to reliably deliver volatile anaesthetics such as halothane or isoflurane to in vitro preparations such as tissues or cells cultures: the very volatility of the drugs means that they can rapidly dissipate from even carefully-prepared solutions. Furthermore, many experiments require the control of other gases (such as oxygen or carbon dioxide) which requires constant perfusion. NEW METHOD: We describe a constant perfusion system that is air-tight (i.e., allows the accurate administration of hypoxic or hypercapnic gas mixtures), in which volatile anaesthetic is delivered via calibrated vaporisers by constant bubbling into the perfusing solution (and continuously monitored for stability by infrared spectroscopy in the headspace above the solution). RESULTS: We have confirmed the accuracy (i.e., linear relationship of dissolved concentrations with vapour dial settings) and stability (i.e., over time) of the anaesthetic concentrations in solutions in samples taken from the bottles into which anaesthetic is bubbled, and from samples taken from the tissue perfusion bath, using gas chromatrography-mass spectrometry (GC-MS). CONCLUSIONS: It is possible to deliver volatile anaesthetics in accurate concentrations to cell/tissue preparations whilst adjusting ambient air composition rapidly, stable over sustained time periods.

Original publication

DOI

10.1016/j.jneumeth.2015.11.002

Type

Journal article

Journal

J Neurosci Methods

Publication Date

30/01/2016

Volume

258

Pages

87 - 93

Keywords

Gas chromatography–mass spectrometry, Infrared analyses, Perfusion rig, Volatile anaesthetics, Anesthetics, Inhalation, Perfusion