Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Studies using the alphavirus Semliki Forest virus have indicated that the viral E1 fusion protein forms two types of pore: fusion pores and ion-permeable pores. The formation of ion-permeable pores has not been generally accepted, partly because it was not evident how the protein might form these different pores. Here it is proposed that the choice of the target membrane determines whether a fusion pore or ion-permeable pores are formed. The fusion protein is activated in the endosome and for steric reasons only a fraction of the activated molecules can interact with the endosomal membrane. This target membrane reaction forms the fusion pore. It is proposed that the rest of the activated molecules interact with the membrane in which the protein is anchored and that this self-membrane reaction leads to formation of ion-permeable pores, which can be detected in the target membrane after fusion of the viral membrane into the target membrane.

Original publication

DOI

10.1099/vir.0.79845-0

Type

Journal article

Journal

J Gen Virol

Publication Date

06/2004

Volume

85

Pages

1695 - 1701

Keywords

Hydrogen-Ion Concentration, Membrane Fusion, Semliki forest virus, Viral Fusion Proteins