Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The antiproliferative action of the guanine-specific ribonuclease secreted by Bacillus intermedius (binase) was studied in different chicken and mouse cell lines. The proliferation rate of chicken embryo fibroblasts, either normal or Rous sarcoma virus-transformed, was significantly reduced by binase treatment. Among mouse fibroblasts, v-ras-transformed NIH3T3 cells were sensitive to binase, whereas the growth of non-transformed, v-src-transformed or v-fms-transformed NIH3T3 cells was not affected. A 48 h treatment with binase inhibited the Ca2+-dependent K+ current of v-ras-transformed NIH3T3 cells but had no effect on this membrane current in non-transformed and in v-src- or v-fms-transformed NIH3T3 cells. Our results suggest that mammalian cells expressing the ras-oncogene are a potential target for the antiproliferative action of binase.


Journal article



Publication Date





101 - 107


3T3 Cells, Animals, Bacillus, Calcium, Cell Division, Cell Survival, Cell Transformation, Viral, Cells, Cultured, Chick Embryo, Dose-Response Relationship, Drug, Membrane Potentials, Mice, Patch-Clamp Techniques, Potassium Channels, Ribonucleases