Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Cystic fibrosis (CF) is one of the most common monogenic disorders in the caucasian population. Gene therapy for CF is principally feasible and bacterial transfer systems might provide novel possibilities for therapy. However, transfection efficiencies are low and need to be improved. Thus, more detailed understanding of the DNA transfer mechanism is necessary to systematically eliminate these restrictions. METHODS: Functional transfer of GFP-CFTR (cystic fibrosis transmembrane conductance regulator) to eukaryotic cells using attenuated Listeria monocytogenes mediated gene transfer (bacteriofection) was shown by fluorescent microscopy, flow cytometry, immunoblotting and whole cell patch clamping. The characteristics of plasmid transfer were studied by use of electron and fluorescence microscopy, flow cytometry and Southern blotting. Polymerase chain reaction (PCR) was used to screen the genome of bacteriofected cells for cotransfer of chromosomal bacterial DNA. RESULTS: Correct intracellular localization and functionality of the GFP-CFTR fusion protein after bacteriofection was shown. Efficient bacterial lysis and release of bacterial content was demonstrated using antibiotics to kill intracellular bacteria. Although only low transfection rates were observed, high numbers of transferred plasmids were detected in host cells under these conditions. However, they were associated with high molecular weight entities and not available to cytosolic transcription. Cotransfer of bacterial genomic DNA was observed in transfectants but occurred at low frequencies. CONCLUSIONS: In this work we demonstrate that low rates of bacteria-mediated transfection are not due to poor invasion of bacteria, insufficient bacterial lysis, or plasmid DNA degradation. Our data suggest that the transferred plasmid DNA is associated with higher macromolecular structures inhibiting nuclear transport and transgene transcription.

Original publication




Journal article


J Gene Med

Publication Date





1097 - 1112


Animals, Anti-Bacterial Agents, CHO Cells, Calcium Phosphates, Cell Nucleus, Cricetinae, Cricetulus, Cystic Fibrosis Transmembrane Conductance Regulator, Cytosol, DNA, Bacterial, Drug Carriers, Electrophysiology, Gene Transfer Techniques, Humans, Listeria monocytogenes, Mice, Plasmids, Recombinant Fusion Proteins, Transfection