Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ClC-1 belongs to the gene family of CLC Cl(-) channels and Cl(-)/H(+) antiporters. It is the major skeletal muscle chloride channel and is mutated in dominant and recessive myotonia. In addition to the membrane-embedded part, all mammalian CLC proteins possess a large cytoplasmic C-terminal domain that bears two so-called CBS (from cystathionine-beta-synthase) domains. Several studies indicate that these domains might be involved in nucleotide binding and regulation. In particular, Bennetts et al. (J. Biol. Chem. 2005. 280:32452-32458) reported that the voltage dependence of hClC-1 expressed in HEK cells is regulated by intracellular ATP and other nucleotides. Moreover, very recently, Bennetts et al. (J. Biol. Chem. 2007. 282:32780-32791) and Tseng et al. (J. Gen. Physiol. 2007. 130:217-221) reported that the ATP effect was enhanced by intracellular acidification. Here, we show that in striking contrast with these findings, human ClC-1, expressed in Xenopus oocytes and studied with the inside-out configuration of the patch-clamp technique, is completely insensitive to intracellular ATP at concentrations up to 10 mM, at neutral pH (pH 7.3) as well as at slightly acidic pH (pH 6.2). These results have implications for a general understanding of nucleotide regulation of CLC proteins and for the physiological role of ClC-1 in muscle excitation.

Original publication

DOI

10.1085/jgp.200709899

Type

Journal article

Journal

J Gen Physiol

Publication Date

02/2008

Volume

131

Pages

109 - 116

Keywords

Adenosine Triphosphate, Animals, Cell Line, Chloride Channels, Cystic Fibrosis Transmembrane Conductance Regulator, Female, Humans, Hydrogen-Ion Concentration, Ion Channel Gating, Membrane Potentials, Muscle, Skeletal, Oocytes, Patch-Clamp Techniques, Temperature, Transfection, Xenopus laevis