Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cl(-) transport in animal cells has fundamental physiological roles and it is mediated by a variety of protein families, one of them being the CLC family of ion channels and transporters. Besides their physiological relevance, CLC proteins show peculiar biophysical properties. This review will focus on a member of the CLC protein family, the endosomal Cl(-)/H(+) antiporter ClC-5. ClC-5 mutations cause Dent's disease, a renal syndrome due to defective protein reabsorption in the proximal tubule. This established the critical function of ClC-5 for endocytosis. However, our understanding of ClC-5's molecular role in endosomes and of its biophysical properties has proved elusive in spite of important progress achieved in the last two decades. Early models in which ClC-5 would provide a shunt conductance to enable efficient endosomal acidification conflicted with the antiport activity of ClC-5 that has more recently emerged. Currently, the physiological role of ClC-5 is hotly debated and its biophysical properties are still not fully understood.

Original publication

DOI

10.1016/j.ceca.2014.09.007

Type

Journal article

Journal

Cell Calcium

Publication Date

07/2015

Volume

58

Pages

57 - 66

Keywords

Chloride transport, Dent's disease, Endocytosis, Endosome, Gating, Transporter, Animals, Chloride Channels, Dent Disease, Endosomes, Humans, Ion Transport, Protein Structure, Tertiary, Vacuolar Proton-Translocating ATPases