Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The charge structure of the surface of articular cartilage determines its interactions with the macromolecules and cells of synovial fluid. It may thereby be important to the physiological function and pathological degeneration of the tissue. To determine whether the electrokinetic properties of the surface differ from those of the bulk tissue, we measured the streaming potential generated by the flow of electrolyte over the surface of a cartilage plug mounted in a chamber built for that purpose. We then calculated the effective surface charge density. In nonfibrillated cartilage from the human femoral head, the surface charge density, 0.037+/-0.004 Cm(-2) (mean+/-SD), was approximately half that measured at the surface of slices cut from the middle and deep zones. In addition, the surface charge density fell relatively little at low pH; this is consistent with a higher proportion of strongly acidic groups. The variations in surface charge density were found to be similar to those in total fixed charge density in the slices by the tracer cation method. Therefore, no evidence exists that the actual surface differs in composition from the immediately underlying matrix. The addition of synovial fluid (0.0025 ml/ml) to the superfusing solution reduced the surface charge density by 25+/-9% (n=5), and we attributed this to the binding of synovial-fluid macromolecules.

Original publication

DOI

10.1002/jor.1100160614

Type

Journal article

Journal

J Orthop Res

Publication Date

11/1998

Volume

16

Pages

720 - 725

Keywords

Animals, Cartilage, Articular, Cattle, Humans, Hydrogen-Ion Concentration, Pressure