Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sip1 is an important transcription factor that regulates several aspects of CNS development. Mutations in the human SIP1 gene have been implicated in Mowat-Wilson syndrome (MWS), characterized by severe mental retardation and agenesis of the corpus callosum. In this study we have shown that Sip1 is essential for the formation of intracortical, intercortical, and cortico-subcortical connections in the murine forebrain. Sip1 deletion from all postmitotic neurons in the neocortex results in lack of corpus callosum, anterior commissure, and corticospinal tract formation. Mosaic deletion of Sip1 in the neocortex reveals defects in axonal growth and in ipsilateral intracortical-collateral formation. Sip1 mediates these effects through its direct downstream effector ninein, a microtubule binding protein. Ninein in turn influences the rate of axonal growth and branching by affecting microtubule stability and dynamics.

Original publication

DOI

10.1016/j.neuron.2015.01.018

Type

Journal article

Journal

Neuron

Publication Date

04/03/2015

Volume

85

Pages

998 - 1012

Keywords

Animals, Axons, Cells, Cultured, Corpus Callosum, Cytoskeletal Proteins, HEK293 Cells, Humans, Mice, Mice, Transgenic, Microtubules, Neocortex, Nerve Tissue Proteins, Nuclear Proteins, Prosencephalon