Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Analysis of electrophysiological signals recorded from the brain with Lempel-Ziv (LZ) complexity, a measure based on coarse-graining of the signal, can provide valuable insights into understanding brain activity. LZ complexity of local field potential signals recorded from the neocortex of 11 adult male Wistar-Kyoto rats in different vigilance states - waking, non-rapid-eye movement (NREM) and REM sleep - was estimated with different coarse-graining techniques (median, LZCm, and k-means, LZCkm). Furthermore, surrogate data were used to test the hypothesis that LZ complexity results reveal effects accounted for by temporal structure of the signal, rather than merely its frequency content. LZ complexity values were significantly lower in NREM sleep as compared to waking and REM sleep, for both real and surrogate signals. LZCkm and LZCm values were similar, although in NREM sleep the values deviated in some epochs, where signals also differed significantly in terms of temporal structure and spectral content. Thus, the interpretation of LZ complexity results should take into account the specific algorithm used to coarse-grain the signal. Moreover, the occurrence of high amplitude slow waves during NREM sleep determines LZ complexity to a large extent, but characteristics such as the temporal sequence of slow waves or cross-frequency interactions might also play a role. © Springer International Publishing Switzerland 2014.

Original publication

DOI

10.1007/978-3-319-00846-2_175

Type

Journal article

Journal

IFMBE Proceedings

Publication Date

01/01/2014

Volume

41

Pages

706 - 709