Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To be clinically relevant as a therapy for heart failure, endogenous progenitor cells must be isolated and expanded from aged and/or diseased tissue. Here, we investigated the effect of age and cardiac impairment resulting from lack of dystrophin on murine cardiosphere-derived cells (CDCs). CDCs were isolated and expanded from atrial biopsies from wild-type mice aged 1.5, 6, 18, and 24 months and from mdx mice aged 6 and 18 months. Cardiac function was measured in mdx mice and age-matched wild-type mice using high-resolution cine magnetic resonance imaging. CDCs could be isolated and expanded from all mice, however, the number of cells obtained, and their regenerative potential, decreased with age, as demonstrated by decreased expression of stem cell markers, c-kit and Sca-1, and decreased cell proliferation, migration, clonogenicity, and differentiation. Six-month-old mdx mice showed right ventricular (RV) dilation and reduced RV ejection fraction (EF) in comparison to wild-type mice. Older mdx mice displayed significant RV and left ventricular dilation and decreased EF in both ventricles, compared with age-matched wild-type mice. Mdx mouse hearts contained significantly more fibrotic tissue than age-matched wild-type mouse hearts. However, CDCs isolated from mice aged 6 and 18 months had the same number and regenerative potential from mdx mice and age-matched wild-type mice. Thus, the cardiac progenitor cell population is impaired by age but is not substantially altered by the progressive deterioration in function of the dystrophic heart.

Original publication




Journal article


Stem Cells Dev

Publication Date





1027 - 1036


Aging, Animals, Cells, Cultured, Mice, Mice, Inbred mdx, Myocardium, Spheroids, Cellular, Stem Cells, Stroke Volume, Ventricular Dysfunction, Right