Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deformation and wall-thickening of ventricular myocardium are essential for cardiac pump function. However, insight into the histo-anatomical basis for cardiac tissue re-arrangement during contraction is limited. In this report, we describe dynamic changes in regionally prevailing cardiomyocyte (fibre) and myolaminar (sheet) orientations, using Diffusion Tensor Imaging (DTI) of ventricles in the same living heart in two different mechanical states. Hearts, isolated from Sprague-Dawley rats, were Langendorff-perfused and imaged, initially in their slack state during cardioplegic arrest, then during lithium-induced contracture. Regional fibre- and sheet-orientations were derived from DTI-data on a voxel-wise basis. Contraction was accompanied with a decrease in left-handed helical fibres (handedness relative to the baso-apical direction) in basal, equatorial, and apical sub-epicardium (by 14.0%, 17.3%, 15.8% respectively; p < 0.001), and an increase in right-handed helical fibres of the sub-endocardium (by 11.0%, 12.1% and 16.1%, respectively; p < 0.001). Two predominant sheet-populations were observed, with sheet-angles of either positive (β+) or negative (β-) polarity relative to a 'chamber-horizontal plane' (defined as normal to the left ventricular long-axis). In contracture, mean 'intersection'-angle (geometrically quantifiable intersection of sheet-angle projections) between β+ and β- sheet-populations increased from 86.2 ± 5.5° (slack) to 108.3 ± 5.4° (p < 0.001). Subsequent high-resolution DTI of fixed myocardium, and histological sectioning, reconfirmed the existence of alternating sheet-plane populations. Our results suggest that myocardial tissue layers in alternating sheet-populations align into a more chamber-horizontal orientation during contraction. This re-arrangement occurs via an accordion-like mechanism that, combined with inter-sheet slippage, can significantly contribute to ventricular deformation, including wall-thickening in a predominantly centripetal direction and baso-apical shortening.

Original publication

DOI

10.1016/j.pbiomolbio.2012.07.014

Type

Journal article

Journal

Prog Biophys Mol Biol

Publication Date

10/2012

Volume

110

Pages

319 - 330

Keywords

Animals, Diffusion Tensor Imaging, Female, Heart, Muscle Contraction, Myocardium, Perfusion, Rats, Rats, Sprague-Dawley, Tissue Survival