Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Direct laser writing is widely used for fabrication of subsurface, three dimensional structures in transparent media. However, the accessible volume is limited by distortion of the focussed beam at the sample edge. We determine the aberrated focal intensity distribution for light focused close to the edge of the substrate. Aberrations are modelled by dividing the pupil into two regions, each corresponding to light passing through the top and side facets. Aberration correction is demonstrated experimentally using a liquid crystal spatial light modulator for femtosecond microfabrication in fused silica. This technique allows controlled subsurface fabrication right up to the edge of the substrate. This can benefit a wide range of applications using direct laser writing, including the manufacture of waveguides and photonic crystals.

Original publication

DOI

10.1364/OE.20.019978

Type

Journal article

Journal

Opt Express

Publication Date

27/08/2012

Volume

20

Pages

19978 - 19989

Keywords

Computer Simulation, Hot Temperature, Lasers, Manufactured Materials, Models, Theoretical, Scattering, Radiation, Surface Properties