Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dopamine neurons play a key role in reward-related behaviors. Reward coding theories predict that dopamine neurons will be inhibited by or will not respond to aversive stimuli. Paradoxically, between 3 and 49% of presumed dopamine neurons are excited by aversive stimuli. We found that, in the ventral tegmental area of anesthetized rats, the population of presumed dopamine neurons that are excited by aversive stimuli is actually not dopaminergic. The identified dopamine neurons were inhibited by the aversive stimulus. These findings suggest that dopamine neurons are specifically excited by reward and that a population of nondopamine neurons is excited by aversive stimuli.

Original publication




Journal article



Publication Date





2040 - 2042


Action Potentials, Animals, Dopamine, Electrophysiology, Microelectrodes, Neural Inhibition, Neurons, Pain, Physical Stimulation, Rats, Reward, Ventral Tegmental Area