Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DMD is a devastatingly progressive muscle wasting disorder of childhood that significantly shortens life expectancy. Despite efforts to develop an effective therapy that dates back over a century, clinical interventions are still restricted to management of symptoms rather than a cure. The rationale to develop effective therapies changed in 1986 with the discovery of the dystrophin gene. Since then extensive research into both the molecular basis and pathophysiology of DMD has paved the way not only for development of strategies which aim to correct the primary defect, but also towards the identification of countless therapeutic targets with the potential to alleviate the downstream pathology. In addition to gene and cell-based therapies, which aim to deliver the missing gene and/or protein, an exciting spectrum of pharmacological approaches aimed at modulating therapeutic targets within DMD muscle cells through the use of small drugs are also being developed. This review presents promising pharmacological approaches aimed at targeting the primary defect, including suppression of nonsense mutations and functional compensation by upregulation of the dystrophin homologue, utrophin. Downstream of the primary membrane fragility, inflammation and fibrosis are reduced by blocking NF-κB, TGF-α and TGF-β, and free radical damage has been targeted using antioxidants and dietary/nutritional supplements. There are new hopes that ACE and PDE5 inhibitors can protect against skeletal as well as cardiac pathology, and modulating Ca2+ influx, NO, BMP, protein degradation and the mitochondrial permeability pore hold further promise in tackling the complex pathogenesis of this multifaceted disorder.

Original publication

DOI

10.2174/156652312800840595

Type

Journal article

Journal

Curr Gene Ther

Publication Date

06/2012

Volume

12

Pages

206 - 244

Keywords

Aminoglycosides, Antigens, CD, Codon, Nonsense, Dystrophin, Gene Expression, Genetic Therapy, Humans, Integrin alpha Chains, Molecular Targeted Therapy, Muscle, Skeletal, Muscular Dystrophy, Duchenne, Suramin, Utrophin