Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. An acid-induced rise in the intracellular calcium concentration ([Ca2+]i) of type I cells is thought to play a vital role in pH/PCO2 chemoreception by the carotid body. In this present study we have investigated the cause of this rise in [Ca2+]i in enzymatically isolated, neonatal rat type I cells. 2. The rise in [Ca2+]i induced by a hypercapnic acidosis was inhibited in Ca(2+)-free media, and by 2 mM Ni2+. Acidosis also increased Mn2+ permeability. The rise in [Ca2+]i is dependent, therefore, upon a Ca2+ influx from the external medium. 3. The acid-induced rise in [Ca2+]i was attenuated by both nicardipine and methoxyverapamil (D600), suggesting a role for L-type Ca2+ channels. 4. Acidosis depolarized type I cells and often (approximately 50% of cells) induced action potentials. These effects coincided with a rise in [Ca2+]i. When membrane depolarization was prevented by a voltage clamp, acidosis failed to evoke a rise in [Ca2+]i. The acid-induced rise in [Ca2+]i is a consequence, therefore, of membrane depolarization. 5. Acidosis decreased the resting membrane conductance of type I cells. The reversal potential of the acid-sensitive current was about -75 mV. 6. A depolarization (30 mM [K+]o)-induced rise in [Ca2+]i was blocked by either the removal of extracellular Ca2+ or the presence of 2 mM Ni2+, and was also substantially inhibited by nicardipine. Under voltage-clamp conditions, [Ca2+]i displayed a bell-shaped dependence on membrane potential. Depolarization raises [Ca2+]i, therefore, through voltage-operated Ca2+ channels. 7. Caffeine (10 mM) induced only a small rise in [Ca2+]i (< 10% of that induced by 30 mM extracellular K+). Ca(2+)-induced Ca2+ release is unlikely, therefore, to contribute greatly to the rise in [Ca2+]i induced by depolarization. 8. Although the replacement of extracellular Na+ with N-methyl-D-glucamine (NMG), but not Li+, inhibited the acid-induced rise in [Ca2+]i, this was due to membrane hyperpolarization and not to the inhibition of Na(+)-Ca2+ exchange or Na(+)-dependent action potentials. 9. The removal of extracellular Na+ (NMG substituted) did not have a significant effect upon the resting [Ca2+]i, and only slowed [Ca2+]i recovery slightly following repolarization from 0 to -60 mV. Therefore, if present, Na(+)-Ca2+ exchange plays only a minor role in [Ca2+]i homeostasis. 10. In summary, in the neonatal rat type I cell, hypercapnic acidosis raises [Ca2+]i through membrane depolarization and voltage-gated Ca2+ entry.

Original publication

DOI

10.1113/jphysiol.1994.sp020239

Type

Journal article

Journal

J Physiol

Publication Date

01/07/1994

Volume

478 ( Pt 1)

Pages

157 - 171

Keywords

Action Potentials, Animals, Calcium, Carotid Body, Cell Hypoxia, Cell Membrane Permeability, Fura-2, Gallopamil, Hydrogen-Ion Concentration, In Vitro Techniques, Kinetics, Manganese, Meglumine, Membrane Potentials, Nicardipine, Nickel, Potassium, Rats, Rats, Sprague-Dawley, Sodium, Spectrometry, Fluorescence, Strophanthidin, Tetrodotoxin