Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We are able to rapidly recognize and localize the many sounds in our environment. We can describe any of these sounds in terms of various independent "features" such as their loudness, pitch, or position in space. However, we still know surprisingly little about how neurons in the auditory brain, specifically the auditory cortex, might form representations of these perceptual characteristics from the information that the ear provides about sound acoustics. In this article, the authors examine evidence that the auditory cortex is necessary for processing the pitch, timbre, and location of sounds, and document how neurons across multiple auditory cortical fields might represent these as trains of action potentials. They conclude by asking whether neurons in different regions of the auditory cortex might not be simply sensitive to each of these three sound features but whether they might be selective for one of them. The few studies that have examined neural sensitivity to multiple sound attributes provide only limited support for neural selectivity within auditory cortex. Providing an explanation of the neural basis of feature invariance is thus one of the major challenges to sensory neuroscience obtaining the ultimate goal of understanding how neural firing patterns in the brain give rise to perception.

Original publication

DOI

10.1177/1073858410371009

Type

Journal article

Journal

Neuroscientist

Publication Date

08/2010

Volume

16

Pages

453 - 469

Keywords

Acoustic Stimulation, Animals, Auditory Cortex, Auditory Pathways, Evoked Potentials, Auditory, Neurons, Pitch Perception, Sound Localization