Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Commotio cordis, mechanical induction of heart rhythm disturbances, including sudden cardiac death, in the absence of corresponding structural damage, has been reported with increasing frequency in young individuals participating in sporting activities. Recently, the electrophysiological changes during c. cordis have been attributed to mechano-electric feedback, and particularly, to the recruitment of stretch-activated ion channels. The underlying mechanisms, however, by which a mechanical impact results in ventricular fibrillation, remain unknown. This study employs a 3D realistic model of rabbit ventricular geometry and fiber orientation to elucidate the electrophysiological mechanisms involved in arrhythmia induction following acute mechanical stimulation of the heart. Impact effects are modeled through stretch-activated ion channel activation in a 3D region of the ventricles representing the impact profile. Both cation-nonselective and potassium-selective stretch-activated ion channels are recruited upon mechanical impact. The impact is administered at various coupling intervals following pacing at the apex. To aid in the interpretation of results, the effect of mechanical stimulation on single cell action potentials is also examined. The results demonstrate that the region of impact is characterized by different types of cellular responses, including generation of a new action potential, shortening, or lengthening of action potential duration. The impact induces sustained reentry only when (1) a new activation is elicited by mechanical stimulation (caused by activation of cation-nonselective stretch-activated ion channels), and (2) upon return to the original region of impact, this activation does not encounter an extension of action potential duration (prevented by activation of potassium-selective stretch-activated ion channels).

Original publication




Journal article


J Mol Histol

Publication Date





679 - 686


Action Potentials, Animals, Arrhythmias, Cardiac, Humans, Imaging, Three-Dimensional, Models, Biological, Myocardium, Rabbits, Sports, Stress, Mechanical