Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The gaseous neurotransmitter nitric oxide plays an important role in the modulation of corticostriatal synaptic transmission. This study examined the impact of frontal cortex stimulation on striatal nitric oxide efflux and neuron activity in urethane-anesthetized rats using amperometric microsensor and single-unit extracellular recordings, respectively. Systemic administration of the neuronal nitric oxide synthase inhibitor 7-nitroindazole decreased spontaneous spike activity without affecting activity evoked by single-pulse stimulation of the ipsilateral cortex. Train (30 Hz) stimulation of the contralateral frontal cortex transiently increased nitric oxide efflux in a robust and reproducible manner. Evoked nitric oxide efflux was attenuated by systemic administration of 7-nitroindazole and the non-selective nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Train stimulation of the contralateral cortex, in a manner identical to that used to evoke nitric oxide efflux, had variable effects on spike activity assessed during the train stimulation trial, but induced a short-term depression of cortically evoked activity in the first post-train stimulation trial. Interestingly, 7-nitroindazole potently decreased cortically evoked activity recorded during the train stimulation trial. Moreover, the short-term depression of spike activity induced by train stimulation was enhanced following pretreatment with 7-nitroindazole and attenuated after systemic administration of the dopamine D2 receptor antagonist eticlopride. These results demonstrate that robust activation of frontal cortical afferents in the intact animal activates a powerful nitric oxide-mediated feed-forward excitation which partially offsets concurrent D2 receptor-mediated short-term inhibitory influences on striatal neuron activity. Thus, nitric oxide signaling is likely to play an important role in the integration of corticostriatal sensorimotor information in striatal networks.

Original publication




Journal article


Eur J Neurosci

Publication Date





1739 - 1754


Animals, Cerebral Cortex, Corpus Striatum, Electric Stimulation, Feedback, Physiological, Male, Neural Pathways, Neurons, Nitric Oxide, Rats, Rats, Sprague-Dawley, Signal Transduction