Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ligands for peroxisome proliferator-activated receptors alpha (PPARalpha) are clinically used for the treatment of patients with hyperlipidemia. As we have previously shown, a synthetic ligand of PPARalpha, fenofibrate, has a stimulatory effect on insulin secretion in clonal hamster insulinoma beta-cell line HIT-T15 cells. We have also demonstrated that fenofibrate directly inhibits ATP-sensitive potassium (K(ATP)) channels, an effect independent of PPARalpha. In this study, fenofibrate was shown to be able to reduce voltage-dependent K(+) (K(v)) channel currents in voltage-independent manner. Therefore, fenofibrate may modulate insulin secretion not only via inhibition of K(ATP) channels but also via reduction of the K(v) channel current.


Journal article


Gen Physiol Biophys

Publication Date





455 - 460


Animals, Cell Line, Cricetinae, Dose-Response Relationship, Drug, Fenofibrate, Insulin-Secreting Cells, Ion Channel Gating, PPAR alpha, Potassium Channels