Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cardiac myocytes and fibroblasts are essential elements of myocardial tissue structure and function. In vivo, myocytes constitute the majority of cardiac tissue volume, whereas fibroblasts dominate in numbers. In vitro, cardiac cell cultures are usually designed to exclude fibroblasts, which, because of their maintained proliferative potential, tend to overgrow the myocytes. Recent advances in microstructuring of cultures and cell growth on elastic membranes have greatly enhanced in vitro preservation of tissue properties and offer a novel platform technology for producing more in vivo-like models of myocardium. We used microfluidic techniques to grow two-dimensional structured cardiac tissue models, containing both myocytes and fibroblasts, and characterized cell morphology, distribution, and coupling using immunohistochemical techniques. In vitro findings were compared with in vivo ventricular cyto-architecture. Cardiac myocytes and fibroblasts, cultured on intersecting 30-microm-wide collagen tracks, acquire an in vivo-like phenotype. Their spatial arrangement closely resembles that observed in native tissue: Strands of highly aligned myocytes are surrounded by parallel threads of fibroblasts. In this in vitro system, fibroblasts form contacts with other fibroblasts and myocytes, which can support homogeneous and heterogeneous gap junctional coupling, as observed in vivo. We conclude that structured cocultures of cardiomyocytes and fibroblasts mimic in vivo ventricular tissue organization and provide a novel tool for in vitro research into cardiac electromechanical function.

Original publication




Journal article


Microsc Microanal

Publication Date





249 - 259


Animals, Coculture Techniques, Fibroblasts, Microscopy, Confocal, Models, Cardiovascular, Myocytes, Cardiac, Rabbits, Sinoatrial Node