Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human brain oscillations occur in different frequency bands that have been linked to different behaviours and cognitive processes. Even within specific frequency bands such as the beta- (14-30 Hz) or gamma-band (30-100 Hz), oscillations fluctuate in frequency and amplitude. Such frequency fluctuations most probably reflect changing states of neuronal network activity, as brain oscillations arise from the correlated synchronized activity of large numbers of neurons. However, the neuronal mechanisms governing the dynamic nature of amplitude and frequency fluctuations within frequency bands remain elusive. Here we show that in acute slices of rat prefrontal cortex (PFC), carbachol-induced oscillations in the beta-band show frequency and amplitude fluctuations. Fast and slow non-harmonic frequencies are distributed differentially over superficial and deep cortical layers, with fast frequencies being present in layer 3, while layer 6 only showed slow oscillation frequencies. Layer 5 pyramidal cells and interneurons experience both fast and slow frequencies and they time their spiking with respect to the dominant frequency. Frequency and phase information is encoded and relayed in the layer 5 network through timed excitatory and inhibitory synaptic transmission. Our data indicate that frequency fluctuations in the beta-band reflect synchronized activity in different cortical subnetworks, that both influence spike timing of output layer 5 neurons. Thus, amplitude and frequency fluctuations within frequency bands may reflect activity in distinct cortical neuronal subnetworks that may process information in a parallel fashion. © 2009 The Authors. Journal compilation © 2009 The Physiological Society.

Original publication




Journal article


Journal of Physiology

Publication Date





5177 - 5196