Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nucleus pulposus (NP) of the intervertebral disc in cattle and humans shows the most dramatic changes with aging of any cartilaginous tissue. In humans, notochordal cells disappear from the NP and are replaced with chondrocytic cells by adolescence. However, notochordal cells of the NP persist into adult life in some species, such as rats and rabbits. Therefore, comparison of the metabolic activity of notochordal and nonnotochordal cells is considered to be important for determining the type of cell to use for transplantation to regenerate intervertebral discs. In this study, we investigated the notochordal NP cells of rats and rabbits, as well as nonnotochordal (chondrocyte-like) bovine NP cells, in a three-dimensional culture system to examine whether proteoglycan metabolism varied among these three cell types. As a result, bovine NP cells produced around 0.18 mg/mL of glycosaminoglycan after culture for 5 days, while rat and rabbit NP cells produced about four and two times more glycosaminoglycan than bovine cells, respectively. In conclusion, this study demonstrated marked differences of energy metabolism and production of matrix components between notochordal and nonnotochordal NP cells. Animals with notochordal cells in the NP, such as rats and rabbits, may not provide good models for investigation of biological repair and tissue engineering for human disc disorders.

Original publication

DOI

10.1089/ten.tea.2009.0250

Type

Journal article

Journal

Tissue Eng Part A

Publication Date

12/2009

Volume

15

Pages

3835 - 3846

Keywords

Animals, Cattle, Cell Separation, Cell Shape, Cells, Cultured, Disease Models, Animal, Extracellular Space, Glycosaminoglycans, Humans, Intervertebral Disc, Male, Models, Biological, Phenotype, Proteoglycans, Rabbits, Rats, Spinal Diseases, Tail, Tissue Engineering, Wound Healing